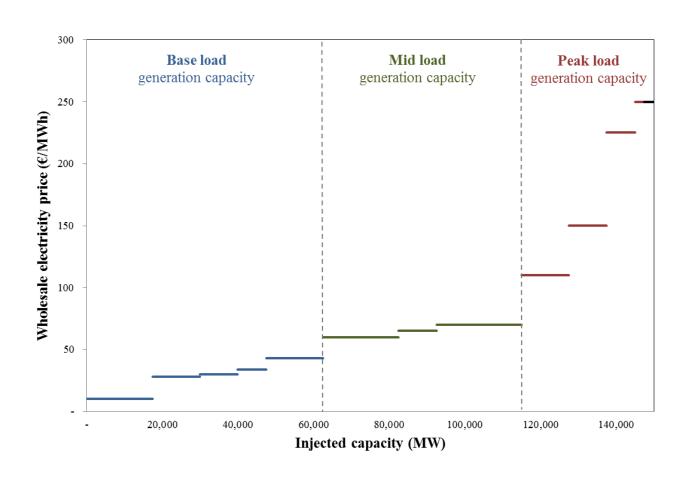
A quantitative analysis of the merit order effect The case of PV in Italy EU PVSEC 2013

Thursday 3 October 2013

1- Introduction

The purpose of the study

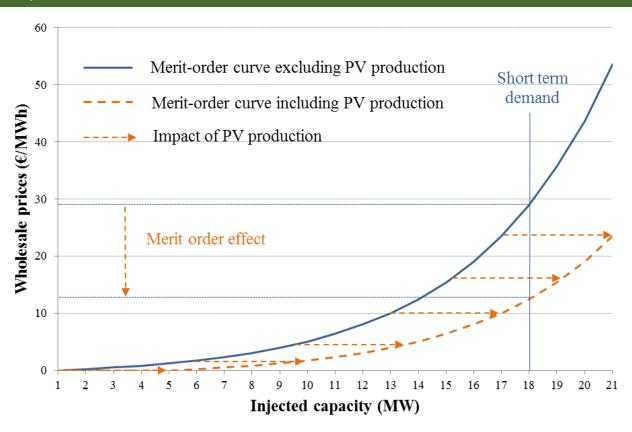
- What is the net cost of Renewables?
- Costs
 - Intermittency:
 - need for priority of dispatch (physical constraint)
 - Maybe also need for additional spare peak capacities
 - Small and distributed
 - Requires **grid reinforcement** works
 - High LCOE:
 - Operators need support schemes
- Impact on electricity market
 - Examples of negative prices recently


- Benefit
 - Applies a downward pressure on spot prices when the sun shines => gain for all the consumers
 - It is called the Merit Order Effect

The debate about the cost of RE should balance the negative and positive monetary consequences

2- The Merit order Effect

Merit Order Curve ("MOC")



- Demand is inelastic because consumers supplied on long term contracts
- In a market environment, at a given time price is set by the most expensive power producer able to satisfy the demand (i.e with the highest marginal costs).
- This price is imposed to all other producers.

1- Introduction

The purpose of the study

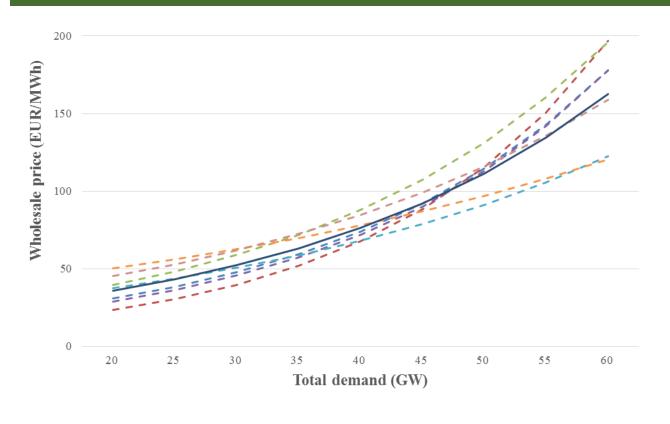
RE production shifts the MOC rightward => decrease in spot price for a given demand

2- Merit order Effect

Set of assumptions and protocol: Why Italy

- PV is the predominent RE source in the country but acceptable penetration rate (**no negative prices**)
- Limited **interconnection** with neighboring countries, no self-consumption
- Efficient market with a diverse energy mix => easy to extract a Merit Order Curve
- All electricity is traded on the spot market. Spot mechanisms are **internalised** in LT contracts

3- Historical analysis


Data collection and protocol

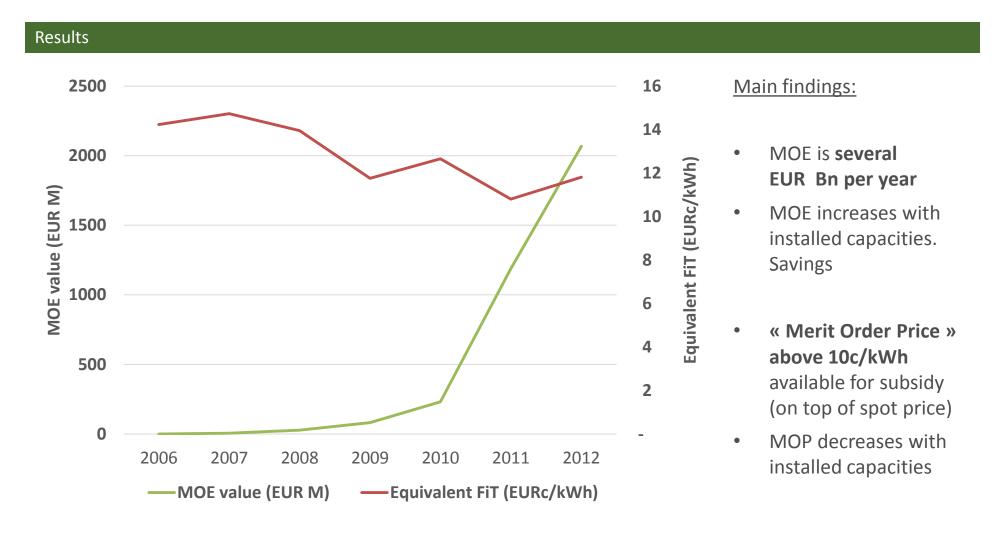
- PV production data
 - Irradiation and temperature from GeoModel,
 - since Jan 2003 (MFG then MSG satellite),
 - 15-minute time step transformed into hourly
 - Performance ratio including temperature
 - Monthly PV capacity provided by GSE
 - Split in 3 regions: North, Center & South
- Total production data from Mercatoelettrico
- Wholesale electricity prices from Mercatoelettrico
- Constant MOC referential: total production was retreated by intermittent PV production
- **Exponential** profile: the log of the spot price was correlated to the retreated production

3- Historical analysis

Merit Order Curve

Year		R ²
	2006	84%
	2007	82%
	2008	77%
	2009	71%
	2010	72%
	2011	63%
	2012	71%

-	-	- 2006 (R ² 84%)
_	_	- 2010 (R ² 72%)



-	-	-	2009 (R ² 71%)	
_		_	2006-2012 (R ²	71%)

R²>70%

3- Historical analysis

4- Statistical analysis

Protocol

- **100 Monte Carlo** simulations of hourly yield throughout the year.
- Each data set (hourly production) follows an independent normal distribution
- We used the same MOC (on 2006-2012 data) so as to have comparable results
- We calculated the MOE
 - for each PV installation rate observed between 2006 and 2012
 - For each electricity demand profile observed between 2006 and 2012

4- Statistical analysis

Results

Relative variations		PV installed capacity						
to 2006 MOP		2006	2007	2008	2009	2010	2011	2012
Consumption profiles	2006	0.0%	1.7%	1.6%	1.8%	0.6%	-6.2%	-2.0%
	2007	2.3%	3.4%	3.1%	3.2%	2.0%	-4.7%	-1.1%
	2008	-4.9%	-1.1%	-1.5%	-0.8%	-2.3%	-8.1%	-3.8%
	2009	-17.2%	-17.2%	-17.5%	-17.7%	-18.5%	-23.9%	-20.7%
	2010	-9.6%	-9.6%	-9.9%	-9.9%	-10.9%	-17.1%	-14.0%
	2011	-16.8%	-17.4%	-17.3%	-17.6%	-18.3%	-24.4%	-21.1%
	2012	-11.1%	-8.8%	-9.7%	-8.8%	-10.1%	-15.8%	-12.6%

- MOE does not varie much with penetration rate
- MOE varies materially with the demand profile

5- Conclusion

Limits of the study and ideas for further improvements

- 5000 simulations led to comparable results than 7
- There is a direct relationship between demand and prices (decent correlation)
- MOE > EUR 2 Bn in Italy today
- MOP > 100 EUR/MWh produced by PV
- MOP does not depend much on PV penetration rate
- MOP is sensitive to the correlation between electricity demand and PV supply
- Next steps:
 - Include wind in our study
 - Run the Monte Carlo on irradiation rather than yield
 - Take account of self consumption, exports/imports
 - Calculate the MOE for other European countries
 - TELL THE WORLD!

5- Acknowledgments

Special thanks to

Malo CARTON (malo.carton@mines.org)
Mines ParisTech

• Nicolas Gourvitch (n.gourvitch@green-giraffe.eu) Green Giraffe Energy Bankers

Henri Gouzerh (h.gouzerh@green-giraffe.eu)
Green Giraffe Energy Bankers

Gaëtan Masson (g.masson@epia.org)
EPIA

Green Giraffe Energy Bankers

www.green-giraffe.eu

Paris

8 rue d'Uzès, 75002 Paris

tel: + 331 4221 3663

email: fr@green-giraffe.eu

Utrecht

Maliebaan 92, 3581 CX Utrecht

tel: + 31 30 820 0334

email: nl@green-giraffe.eu

London

133 Houndsditch, London EC3A 7BX

tel: + 4475 5400 0828

email: uk@green-giraffe.eu

Hamburg

Mattentwiete 5, 20457 Hamburg

tel: + 4917 6551 28283

email: de@green-giraffe.eu